MAT251 Notes on 1.2 Factors and Multiples

Natural numbers \mathbb{N} are the set of nonnegative integers $\{0, 1, 2, 3, ...\}$

For integers m and n, n is a **multiple of** m if $n = km$, for some integer k.

n is divisible by m, m divides n, $m|n$, m is a divisor of n, m is a factor of n.

Else m does not divide n, $m \nmid n$

Example 1

$4|12$, $5|20$, $23|23$, $11|1001$ because $1001 = 91 \cdot 11$, also $13|1001$ because $13|91$ and $91|1001$.

For nonzero n, $1|n$ and $n|n$, because $n = n \cdot 1 = 1 \cdot n$

When $n = km$, and $m \neq 0$, then k must be the integer $\frac{n}{m}$.

Thus $m|n$ if and only if $\frac{n}{m}$ is an integer.

Example 2

Treat above example 1 in terms of quotients: $\frac{12}{4} = 3$

Example 3

Consider the special case of zero: 0 is a multiple of every n, but its only multiple is 0.

Divisibility \sim size:

Proposition: If m and n are positive **integers** such that $m|n$, then $m \leq n$ and $\frac{n}{m} \leq n$.

Proof: Let $k = \frac{n}{m}$, then the integer k is not negative and not zero; so $1 \leq k$ and $1 \cdot m \leq k \cdot m; m \leq n$.

Since $km = n$, we have $k|n$ and the same argument shows that $k \leq n$.

Note: argument fails for rationals.

Theorem 1 An integer n greater than 1 is prime iff its **only** positive divisors are 1 and n.

Prove the equivalent statement:

n is not prime iff it has at least one positive divisor other than 1 and n.

If n is not prime then there are integers s and t, where $s < n$ and $t < n$ and $n = st$.

Now s is a positive divisor other than 1 and n.

If n has some positive divisor m other than 1 and n, then $\frac{n}{m}$ is an integer k and $n = k \cdot m$, and by the proposition both k and m are $< n$, so n is not prime.

Factoring as product of primes: $120 = 10 \cdot 12 = 2 \cdot 5 \cdot 3 \cdot 4 = 2^3 \cdot 3 \cdot 5$. $91 = 7 \cdot 13$
1. $m|n$, “m divides n” means there is an integer k such that $n = km$.
 a) $8|4$ is false because 8 is bigger than 4 b) $4|15$ is false because 15 divided by 4 is a fraction
 c) $22|374$ is true because $374 = 17 \cdot 22$ d) $11|1001$ is true because 1001 = $91 \cdot 11$
 e) $3|1000$ is false because dividing any power of 10 by 3 leaves a remainder of 1.

2. a) $n|1$ is true only for $n = 1$ b) $n|n$ for all positive integers ($n = 1$ for all n)
 c) $n|n^2$ because $n^2 = n \cdot n$

3. a) The $\gcd(m, n)$ is the largest integer which is a divisor of m and n. [Use only common factors]
 b) The $\text{lcm}(m, n)$ is the smallest integer which is a multiple of m and n. [Use smallest common
 multiples]
 Because $27 = 3 \cdot 3 \cdot 3$ and $28 = 2 \cdot 2 \cdot 7$, $\gcd(27, 28)$ is 1 and $\text{lcm}(27, 28) = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 7 = 756$
 Because $6 = 2 \cdot 3$ and $20 = 2 \cdot 2 \cdot 5$, $\gcd(6, 20)$ is 2 and $\text{lcm}(6, 20) = 2 \cdot 2 \cdot 3 \cdot 5 = 60$
 Because $15 = 3 \cdot 5$ and $30 = 2 \cdot 3 \cdot 5$, $\gcd(15, 30)$ is $3 \cdot 5 = 15$ and $\text{lcm}(15, 30) = 2 \cdot 3 \cdot 5 = 30$
 Because $16 = 2 \cdot 2 \cdot 2 \cdot 2$ and $27 = 3 \cdot 3 \cdot 3$, $\gcd(16, 27)$ is 1 and $\text{lcm}(16, 27) = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 432$
 Because 13 is prime and $91 = 7 \cdot 13$, $\gcd(13, 91)$ is 13 and $\text{lcm}(13, 91) = 7 \cdot 13 = 91$.

4. Theorem 3 states that $\gcd(m, n) \cdot \text{lcm}(m, n) = m \cdot n$
 We see that $1 \cdot 756 = 27 \cdot 28$
 that $2 \cdot 60 = 6 \cdot 20$
 that $15 \cdot 30 = 15 \cdot 30$
 that $1 \cdot 432 = 16 \cdot 27$
 that $13 \cdot 91 = 13 \cdot 91$

5. a) The $\gcd(m, n)$ is the largest integer which is a divisor of m and n. [Use only common factors]
 b) The $\text{lcm}(m, n)$ is the smallest integer which is a multiple of m and n. [Use smallest common
 multiples]
 Because $8 = 2 \cdot 2 \cdot 2$ and $12 = 2 \cdot 2 \cdot 3$, $\gcd(8, 12)$ is 2 and $\text{lcm}(8, 12) = 2 \cdot 2 \cdot 3 = 12$
 Because $52 = 2 \cdot 2 \cdot 13$ and $96 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3$, $\gcd(52, 96)$ is 2 and $\text{lcm}(52, 96) = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 = 1248$
 Because $22 = 2 \cdot 11$ and $374 = 2 \cdot 11 \cdot 17$, $\gcd(22, 374)$ is $2 \cdot 11 = 22$ and $\text{lcm}(22, 374) = 2 \cdot 11 \cdot 17 = 374$
 Because $56 = 2 \cdot 2 \cdot 7$ and $126 = 2 \cdot 3 \cdot 3 \cdot 7$, $\gcd(56, 126)$ is 2 and $\text{lcm}(56, 126) = 2 \cdot 2 \cdot 3 \cdot 3 \cdot 7 = 504$
 We see that 37 is prime;
 $\gcd(37, 37) = 37$ and $\text{lcm}(37, 37) = 37$.

6. $33,412,363 = 4649 \cdot 7187$ so $33,412,363$ is not prime.

7. Every integer is a divisor of 0 and every multiple of 0 is 0.
 a) $\gcd(0, 10) = 10$ $\gcd(1, 10) = 1$ $\gcd(10, 10) = 10$
 b) Because n is the largest divisor of itself and n is a divisor of 0, $\gcd(0, n) = n$
 c) Because the only multiple of 0 is 0, $\text{lcm}(0, n) = 0$.

8. $m|n$ means m divides n exactly, which means there is a zero remainder, but there is not a necessary
 association with the prime number 2.