MAT251 The Division Algorithm and Integers mod p

The Division Algorithm

Theorem The Division Algorithm Let a be an integer and d a positive integer, then there are unique integers q and r, with 0 ≤ r < d such that a = dq + r

Definition The integer d above is called the divisor and a is called the dividend, q is called the quotient, and r is called the remainder. We denote these as \(q = a \div d \) and \(r = a \mod d \)

Examples

Find the quotient and remainder if 101 is divided by 11: \(101 = 11 \cdot 9 + 2 \)

Find the quotient and remainder if -11 is divided by 3: \(-11 = 3 \cdot (-4) + 1 \)

\(q = a \div d = \text{floor}(a/d) \) and \(r = a \mod d = a - d \cdot q \)

The values of \(a \mod d \) are in the set \{0, 1, 2, 3, . . ., d−1\} which set is called \(\mathbb{Z}(d) \)

Theorem 1 on page 121 establishes that the relation, defined by \(m = n \pmod{p} \) if and only if \((m−n) = p \cdot q \), is an equivalence relation. The respective remainders on division by p represent the equivalence classes.

Theorem 2 on page 122, Theorem 3 on page 123, and Theorem 4 on page 124 show the connection between arithmetic on \(\mathbb{Z} \) and arithmetic on \(\mathbb{Z}(p) \).

The commutative, associative, and distributive properties of addition and multiplication still hold in the arithmetic of \(\mathbb{Z}(p) \).

However the cancellation property and the zero products principle may not hold when the modulus p is not prime.

Examples: \(3 \cdot_6 5 = 3 \cdot_6 1 \) but \(5 \neq 1 \) and \(3 \cdot_6 2 = 0 \), but \(3 \neq 0 \) and \(2 \neq 0 \).
1. Find q and r as in the division algorithm: \(n = m \cdot q + r \), where \(0 \leq r < m \).

Note that the letter \(m \) is used here rather than the letter \(p \).

a) \(n = 20 \), \(m = 3 \): \(q = \lfloor \frac{20}{3} \rfloor = 6 \) and \(r = 20 - 3(6) = 2 \); so \(20 = 3(6) + 2 \).

b) \(n = 20 \), \(m = 4 \): \(q = \lfloor \frac{20}{4} \rfloor = 5 \) and \(r = 20 - 4(5) = 0 \); so \(20 = 4(5) + 0 \).

c) \(n = -20 \), \(m = 3 \): \(q = \lfloor \frac{-20}{3} \rfloor = -7 \) and \(r = -20 - 3(-7) = 1 \); so \(-20 = 3(-7) + 1 \).

d) \(n = -20 \), \(m = 4 \): \(q = \lfloor \frac{-20}{4} \rfloor = -5 \) and \(r = -20 - 4(-5) = 0 \); so \(-20 = 4(-5) + 0 \).

e) \(n = 371246 \), \(m = 65 \): \(q = \lfloor \frac{371246}{65} \rfloor = 5711 \) and \(r = 371246 - 65(5711) = 31 \).

f) \(n = -371246 \), \(m = 65 \): \(q = \lfloor \frac{-371246}{65} \rfloor = -5712 \) and \(r = -371246 - 65(-5712) = 34 \).

2. Find \(n \) DIV \(m \) and \(n \) MOD \(m \) for the values of \(n \) and \(m \) given as in exercise 1. Answers are the same, where \(q = n \) DIV \(m \) and \(r = n \) MOD \(m \).

3. List three integers that are congruent mod 4 to each of the following.

a) \([0]_4 = \{0, 4, -4, ...\} \)
b) \([1]_4 = \{1, 5, -3, ...\} \)
c) \([2]_4 = \{2, 6, -2, ...\} \)
d) \([3]_4 = \{3, 7, -1, ...\} \)
e) \([4]_4 = \{4, 8, 0, ...\} = [0]_4 \).

4. If we let the smallest non-negative element in an equivalence class represent that class, then

a) \(\mathbb{Z}(4) = \{0, 1, 2, 3\} \) and b) \(\mathbb{Z}(73) = \{0, 1, 2, 3, ..., 72\} \).

5. For the following integers \(m \) find the unique integer \(r \) in \(\{0, 1, 2, 3\} \) such that \(m \equiv r \) (mod 4).

a) \(m = 17 \equiv r \) (mod 4) \(\Rightarrow r = 1 \).

b) \(m = 7 \equiv r \) (mod 4) \(\Rightarrow r = 3 \).

c) \(m = -7 \equiv r \) (mod 4) \(\Rightarrow r = 1 \).

d) \(m = 2 \equiv r \) (mod 4) \(\Rightarrow r = 2 \).

6. Calculate the following modular sums and products.

a) \(4 +_7 4 = 8 - 7 = 1 \)

b) \(5 +_7 6 = 11 - 7 = 4 \)

c) \(4 *_7 4 = 16 - 7(2) = 2 \)

d) \(0 +_7 k = k \) for any \(k \) in \(\mathbb{Z}(7) \).

e) \(1 *_7 k = k \) for any \(k \) in \(\mathbb{Z}(7) \).

7. a) Calculate: \(6 +_{10} 7 = 13 - 10 = 3 \); \(6 *_{10} 7 = 42 - 4(10) = 2 \).

b) \(m +_{10} k \) is the units digit of \((m + k) \).

c) \(m *_{10} k \) is the units digit of \((m * k) \).

8. For \(A_k = \{m \in \mathbb{Z} : -10 \leq m \leq 10 \text{ and } m \equiv k \) (mod 3)\},

a) \(A_0 = \{-9, -6, -3, 0, 3, 6, 9\} \), \(A_1 = \{-8, -5, -2, 1, 4, 7, 10\} \), \(A_2 = \{-10, -7, -4, -1, 2, 5, 8\} \).

b) \(A_3 = A_0 \), \(A_4 = A_1 \), \(A_{73} = A_1 \). Consider the remainders on division of \(k \) by 3.

9. Give the complete addition and multiplication tables for \(\mathbb{Z}(4) \).

\[
\begin{array}{cccc}
+ & 0 & 1 & 2 & 3 \\
0 & 0 & 1 & 2 & 3 \\
1 & 1 & 2 & 3 & 0 \\
2 & 2 & 3 & 0 & 1 \\
3 & 3 & 0 & 1 & 2 \\
\end{array}
\]

\[
\begin{array}{cccc}
* & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 2 & 3 \\
2 & 0 & 2 & 0 & 2 \\
3 & 0 & 3 & 2 & 1 \\
\end{array}
\]

10. Solve the following equations for \(x\) in \(\mathbb{Z}(6)\).
 a) \(1 +_6 x = 0, \ x = 5;\)
 b) \(2 +_6 x = 0, \ x = 4;\)
 c) \(3 +_6 x = 0, \ x = 3;\)
 d) \(4 +_6 x = 0, \ x = 2;\)
 e) \(5 +_6 x = 0, \ x = 1.\)

11. Solve the following equations for \(x\) in \(\mathbb{Z}(5)\).
 a) \(1 \ast_5 x = 1, \ x = 1;\)
 b) \(2 \ast_5 x = 1, \ x = 3;\)
 c) \(3 \ast_5 x = 1, \ x = 2;\)
 d) \(4 \ast_5 x = 1, \ x = 4.\)

12. For \(m, n\) in \(\mathbb{N}\) define \(m \sim n\) if \(m^2 - n^2\) is a multiple of 3.
 a) Show that \(\sim\) is an equivalence relation on \(\mathbb{N}\).
 (R) Because \(m^2 - m^2 = 0 = 3 \cdot 0\) for any \(m\) in \(\mathbb{N}\), then \(m \sim m\); that is, \(\sim\) is reflexive.
 (S) If \(m \sim n\) then \(m^2 - n^2 = 3 \cdot k\), so \(n^2 - m^2 = -(1)(m^2 - n^2) = -(3 \cdot k) = 3 \cdot (-k)\), so \(n \sim m\).
 (T) If \(m \sim n\) and \(n \sim p\) then \(m^2 - n^2 = 3 \cdot k\) and \(n^2 - p^2 = 3 \cdot l\),
 so \(m^2 - p^2 = m^2 - n^2 + n^2 - p^2 = 3 \cdot k + 3 \cdot l = 3(k + l)\), so \(m \sim p\).
 b) \([0] = \{0, 3, 6, 9, ...\}\)
 c) \([1] = \{1, 2, 4, 5, ...\}\)
 d) Clearly there are no more equivalence classes.

13. The definition of \(m \equiv n \pmod{p}\) makes sense even if \(p = 1\).
 a) Clearly \(m \equiv n \pmod{1}\) for all \(m, n\) in \(\mathbb{Z}\), so there is only one equivalence class,
 which we can represent by \([0]\).
 b) \(m \ \text{DIV} \ 1\) would be \(m\) and \(m \ \text{MOD} \ 1\) would be zero.
 c) \(\text{Sum} +_1\) and \(\text{Product} \ast_1\) are defined in this system,
 but \(m +_1 n = (m + n) \ \text{MOD} \ 1 = 0\) and \(m \ast_1 n = (m \cdot n) \ \text{MOD} \ 1 = 0\)
 Thus Theorem 3 says \((m + n) \ \text{MOD} \ 1 = (m \ \text{MOD} \ 1) +_1 (n \ \text{MOD} \ 1)\) or \(0 = 0 +_1 0\)
 and it says \((m \cdot n) \ \text{MOD} \ 1 = (m \ \text{MOD} \ 1) \ast_1 (n \ \text{MOD} \ 1)\) or \(0 = 0 \ast_1 0\)