6.3 Trees
A path in an undirected graph $G = (V, E)$ is a sequence of edges that connect adjacent vertices. An undirected graph $G = (V, E)$ is **connected** if there is a path between any pair of vertices. In a simple graph this path can be denoted by the sequence of vertices, because there are no multiple edges connecting vertices.

A **circuit** is a path with one or more edges in which the last vertex in the sequence is the same as the first vertex.

A path or circuit is called **simple** if it does not contain the same edge more than once.

Theorem There is a simple path between any pair of distinct vertices of a connected undirected graph.

A **tree** is a connected acyclic graph, commonly used in data structures. Trees have no loops and no parallel edges.

There are two non-isomorphic trees with four vertices.

There is a simple path between any pair of distinct vertices of a connected undirected graph.

Theorem 1 Let e be an edge of a connected graph G. Then the following are equivalent:

a) $G \setminus \{e\}$ is connected.

b) e is an edge of some cycle in G.

c) e is an edge of some simple closed path in G.

A minimal subgraph that connects all the vertices of a graph is called a **spanning tree**.

Theorem 2 Every finite connected graph G has a spanning tree.

An undirected graph is a tree iff there is a unique simple path between any pair of its vertices.

Theorem 3 Let G be a graph with more than one vertex, no loops, and no parallel edges. Then the following are equivalent:

a) G is a tree.

b) Each pair of distinct vertices is connected by exactly one simple path.

c) G is connected, but will not be if any edge is removed.

d) G is acyclic, but will not be if any edge is added.

Vertices of degree one are called **leaves**. [Singular is leaf.]

Lemma 1 A finite tree with at least one edge has at least two leaves.

Lemma 2 A tree with n vertices has exactly $n - 1$ edges.

Theorem 4 Let G be a finite graph with n vertices, no loops, and no parallel edges. Then the following are equivalent:

a) G is a tree.

b) G is acyclic and has $n - 1$ edges.

c) G is connected and has $n - 1$ edges.

A **rooted tree** is a tree in which one vertex is distinguished as the root and every edge is directed away from the root.
Note that different choices of the root produce different rooted trees.

A rooted tree in which each internal vertex [which is an ancestor of its descendents] has no more than two children [immediate descendents] is called a **binary tree**.

Example Seven parallel processors may be connected in a full binary tree to efficiently add eight numbers in three cycles; seven cycles would be required for one processor to add these numbers serially.

```
P1: (x1 + x2); P5: (x3 + x4); P6: (x5 + x6); P7: (x7 + x8)
P2: [(x1 + x2) + (x3 + x4)]; P3: [(x5 + x6) + (x7 + x8)]
P4: (x1 + x2); P6: (x5 + x6); P7: (x7 + x8)
P1: {[(x1 + x2) + (x3 + x4)] + [(x5 + x6) + (x7 + x8)]}
```
Exercises p 243. 1 – 6