Functions

A function \(f \) assigns to each element \(x \) in some set \(S \) a single element in a set \(T \).

\(f \) is defined on \(S \) with values in \(T \).

We write \(f : S \rightarrow T \) and read \(f \) maps \(S \) into \(T \).

The set \(S \) is called the **domain** of \(f \), \(\text{Dom}(f) \)

The set \(T \) is called a **codomain** of \(f \)

\(f(x) \) is called the **image** of \(x \) under \(f \); the set of all images is the **range** of \(f \), \(\text{Ran}(f) \)

If \(C \) is a subset of \(S \), then the set of all images of elements in \(C \) is the **image** of \(C \), \(f(C) \).

For \(C \) a subset of \(S \) and \(f : S \rightarrow T \), \(f(C) \) is a subset of \(\text{Ran}(f) \) which is a subset of the codomain.

Examples: \(g(n) = n^3 - 73n + 5 \quad g : \mathbb{N} \rightarrow \mathbb{Z} \)

absolute value: \(|x| = \begin{cases} x & \text{if } x \geq 0 \\ -x & \text{if } x < 0 \end{cases} \quad F(x) = |x|, \text{ maps } \mathbb{R} \text{ to } [0, \infty) \)

floor function: \(\lfloor x \rfloor \text{ maps } \mathbb{R} \text{ to } \mathbb{Z} \).

\[
f(m, n) = \left\lfloor \frac{n}{2} \right\rfloor - \left\lfloor \frac{m-1}{2} \right\rfloor
\]

The **graph** of \(f : S \rightarrow T \) is \(\{(x, y) \in S \times T : y = f(x)\} \)

Then we get the **formal definition:** A function with domain \(S \) and codomain \(T \) is a subset \(G \) of \(S \times T \) for which for each \(x \in S \) there is exactly one \(y \in T \) such that \((x, y) \in G \).

One-to-one and onto

Class size limit is 25; each student registers in next available (numbered) slot. \(F:S \rightarrow \mathbb{N} \)

Each registrant has only one slot and each slot is filled in at most one way.

If each **filled slot** has only one student, \(F \) is a **one-to-one** map. \(x_1, x_2 \in S, x_1 \neq x_2 \Rightarrow F(x_1) \neq F(x_2) \), or use contrapositive. For any \(y \) in \(\mathbb{N} \) there is at most one \(x \) in \(X \) in \(S \) such that \((x, y) \) is in \(G \)

If every slot is filled, \(F \) maps \(S \) **onto** \(\mathbb{N} \).

\(\text{Im}(F) = T \) For any \(y \) in \(T \), there is at least one \(x \) in \(S \) such that \((x, y) \) is in \(G \)

Examples

\(f(n) = 2n \) is a one-to-one map from \(\mathbb{N} \) to \(\mathbb{N} \), but is not onto.

\(G(x) = x^2 \) on \(\{-1, 0, 1\} \) to \(\{0, 1\} \) is not one-to-one but is onto.

\(G \) mapping \(\mathbb{R^+} \) to \(\mathbb{R^+} \) is onto and one-to-one

\(G \) mapping \(\mathbb{R^+} \) to \(\mathbb{R} \) is not onto \(\mathbb{R} \) but is one-to-one

\(\text{length}(w) \) is onto \(\mathbb{N} \), but is not one-to-one (unless \(\Sigma \) has only one letter).

A function that is one-to-one **and** onto is called a **one-to-one correspondence**.