A (binary) relation from S to T is a subset R of $S \times T$, any subset.. If $S = T$, then any subset of $S \times S$ is called a relation on S.

It generalizes the function mapping concept in that it need not be a set of each to one pairings. We say s is R-related to t; that is, $s R t$ if and only if $(s, t) \in R$.

A function is a special kind of relation: for each s in S there is exactly one t in T such that $s R t$. That is, $f(x)$ is that unique element in T such that $(x, f(x)) \in R$.

Consider each of the relations on $S = \{0, 1, 2, 3\}$. Which relations are functions?

a) $(m, n) \in R_1$ if $m + n = 3$. $R_1 = \{(0, 3), (1, 2), (2, 1), (3, 0)\}$. [This is the only function.]

b) $(m, n) \in R_2$ if $m - n$ is even. $R_2 = \{(0, 0), (0, 2), (1, 1), (1, 3), (2, 0), (2, 2), (3, 1), (3, 3)\}$.

c) $(m, n) \in R_3$ if $m \leq n$. $R_3 = \{(0, 0), (0, 1), (0, 2), (0, 3), (1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)\}$.

d) $(m, n) \in R_4$ if $m + n \leq 4$. $R_4 = \{(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(3,0),(3,1)\}$

e) $(m, n) \in R_5$ if max $\{m, n\} = 3$. $R_5 = \{(0, 3), (1, 3), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3)\}$

Properties of relations

(R) Reflexive property means that (x, x) is in the relation for any x in S.

(S) Symmetric property means that if (x, y) is in the relation then (y, x) is also.

(T) Transitive property means that if (x, y) and (y, z) are in the relation, then (x, z) is also.

For equality, these properties say

$x = x$ for any x in S;

if $x = y$ then $y = x$;

if $x = y$ and $y = z$, then $x = z$.

Any relation that has (R), (S), (T) properties is called an equivalence relation.

A relation is antireflexive (AR) iff (x, x) is not in the relation for any x in S.

A relation is antisymmetric (AS) iff (x, y) and (y, x) are both in S only if $x = y$.

A relation is non-symmetric (NS) iff (x, y) and (y, x) are not both in S.

EXAMPLE Equality is the relation $\{(x, x) : x \in S\}$

Note that $=$ is (R), (S), and (T).

EXAMPLE LTE is the relation $\{(x, y) : x \leq y\}$

It is reflexive (R): $x \leq x$ for all $x \in \mathbb{R}$

It is antisymmetric (AS): $x \leq y$ and $y \leq x$ imply that $x = y$

It is transitive (T): $x \leq y$ and $y \leq z$ imply that $x \leq z$.

EXAMPLE LT is the relation $\{(x, y) : x < y\}$

It is antireflexive: (AR): $x < x$ is never true.

It is non-symmetric (NS): $x < y$ and $y < x$ is never true.

It is transitive: (T): $x < y$ and $y < z$ imply that $x < z$.

Composition of relations

If R is a relation from set A to set B and S is a relation from set B to set C, then the composite of R and S is the set of pairs (a, c) such that a is in A and c is in C and there is an element b in B such that (a, b) is in R and (b, c) is in S. The composition of R with S is denoted $S \circ R$.
