In discrete mathematics, graphs are abstract structures that are useful for representing relations. The picture of a graph has a web-like appearance.

Graphs have many uses in computer science and applications, including circuit design, network analysis, schedule of related tasks, route planning.

Genealogy (family trees), computer game-playing, object-oriented design, compiler design are some uses of graph structures.

Simple graphs correspond to *irreflexive, symmetric* relations. The structure \(G = (V, E) \) where \(V \) is a set of vertices, and \(E \) is a set of edges *labeled by the endpoints* which are the distinct vertices which represent pairs in the relation. An example would be the *counties* in a state [or region] along with their *common boundaries*.

Multigraphs are structures that *may* have multiple edges linking a pair of vertices. \(MG = (V, E, f) \) where \(f \) is a *labeling function* that assigns a *unique* name to each edge. An example would be the major *cities* in a region along with the *highways that connect them*.

Pseudographs are generalizations of multigraphs that *may* have edges that connect a vertex to itself. They correspond to *symmetric* relations that *may not be irreflexive*. \(PG = (V, E, f) \) where the *labeling function* may assign a name to a *loop* from vertex \(u \) to itself. An example is campsites in a park along with hiking trails that connect them.

Directed graphs correspond to arbitrary relations that *need not be symmetric*. \(DG = (V, E) \) where \(V \) is a set of vertices and \(E \) is a binary relation on \(V \). The edges are *ordered* pairs, not just a pair of vertices. An example is the streets of a city, in which some streets are one-way; the intersections are the vertices. How would a “dead-end” street be represented?

Directed multigraphs are structures that *may* have multiple edges from one vertex to another. \(DMG = (V, E, f) \) where the *labeling function* assigns a *unique* name to each ordered pair of vertices. The World Wide Web is a directed multigraph. What are the vertices and what are the edges?

Note that other names may be used to represent these structures.