Loop invariants

A loop in an algorithm or program is a sequence of one or more steps that is performed repeatedly as long as a specified condition is met. If \(g \) is the “guard” condition that controls entry into the loop and \(S \) is the sequence of steps, called the body, to be performed, we may represent this control structure as \(\textbf{while } g \textbf{ do } S \). Note that after the body \(S \) is performed, the guard \(g \) is checked to see if \(S \) is to be repeated. When \(g \) is not satisfied, the body \(S \) is skipped and control passes to the next step after the body.

A loop invariant is any condition \(P \) that is true \textit{before} the loop is encountered and which remains true \textit{after} the loop has been executed. It follows that the condition \(P \) will be true after each iteration (pass through) of the loop until the loop terminates with the guard \(g \) not met. The proof uses the Well-ordering Principle, that every nonempty subset of \(\mathbb{N} \) has a smallest element.

Example: Using a loop to find the power \(a^b \) for natural numbers \(a, b \), where \(a>0, b \geq 0 \).

\[
\begin{align*}
{a>0 \land b\geq0} \\
\quad i := 0; \\
\quad p := 1; \\
\textbf{while } i < b \textbf{ do} \\
\quad p := p\times a; \\
\quad i := i+1.
\end{align*}
\]

\{p = a^b\}

To show that the condition \{p = a^i \land i \leq b\} is a loop invariant, we use an informal proof:

If \(p = a^i \) before the loop, then multiplying by \(a \) produces \(p\times a = a^i \times a = a^{i+1} \). But this is the statement that the “new \(p \)” equals \(a \) to the power “new \(i \)”. A formal proof could take up to 30 steps [James Hein, Discrete Structures, Logic, and Computability, Jones & Bartlett, 1995, pp425-426].

Example: The condition: \{Product is even \text{ and sum is odd, for natural numbers } m \text{ and } n.\} is preserved by incrementing both factors by 1.

Given \(m\times n = 2p \) for some natural \(p \) and \(m+n = 2r+1 \) for some natural \(r \), then:

“new product” = \((m+1)(n+1) = m\times n + (m+n) + 1 = 2p + (2r+1) + 1 = 2q \) for some \(q \);
and “new sum” = \((m+1)+(n+1) = (m+n) + 2 = (2r+1) + 2 = 2s+1 \) for some \(s \).

Note that the preceding condition could be replaced by the “simpler” condition: \{Sum is odd\}, because the sum of two naturals being odd implies their product is even. [Can you provide a proof?]

Note also that if the condition \{...\} is not true before the loop is executed, there is no point in checking for loop invariance.

What is the invariant condition suggested by the following additions?

\[
1+3 = 2^2 \\
1+3+5=3^2 \\
1+3+5+7=4^2 \\
1+3+...+9=5^2
\]

[The sum of \(n \) odd naturals equals ...]

Is an invariant suggested by the following calculations? [Is it true for \(n=41 \)]

\[
1^2 - 1 + 41 = 41 \\
2^2 - 2 + 41 = 43 \\
3^2 - 3 + 41 = 47 \\
4^2 - 4 + 41 = 53
\]