21. Theorem: “If \(n \) is an integer and \(n^3 + 5 \) is odd, then \(n \) is even.”

a) **Proof of the contrapositive**: If \(n \) is not even, then \(n \) equals \(2k + 1 \) for some integer \(k \). So \(n^3 + 5 \) equals \((8k^3 + 12k^2 + 6k + 1) + 5 \) which equals \(2(4k^3 + 6k^2 + 3k + 3) \). So \(n^3 + 5 \) is not odd.

b) **Proof by contradiction**: Suppose \(n^3 + 5 \) is odd and \(n \) is not even. Then \(n^3 + 5 \) being odd implies \(n^3 \) must be even; but \(n \) being odd implies \(n^3 \) is odd. It is a contradiction for \(n^3 \) to be even and to be odd. Hence, \(n^3 + 5 \) being odd implies \(n \) is even.

23. Theorem: “The sum of two odd integers is even.”

Direct proof: \((2k+1) + (2j + 1) = 2k + 2j + 2 = 2(k + j +1) \).

25. Theorem: “The sum of an irrational number and a rational number is irrational.”

Proof by contradiction: Let \(x \) be irrational, and let \(r = \frac{p}{q} \) be rational, and let \(x + r = s \). Suppose the sum \(s \) is *not* irrational, then the difference \(s - r \) which equals \(x \) must also be rational. This is a contradiction of the hypothesis that \(x \) is irrational. Hence, \(x + r \) must be irrational.

27. For the conjecture that the product of two irrational numbers is irrational, we consider the counterexample: The product of the irrational number \(\sqrt{2} \) with itself: \(\sqrt{2} \cdot \sqrt{2} \) equals 2, a rational number.

31. To provide that at least 10 of any 64 days must fall on the same day of the week, consider the contrary: “No more than 9 days fall on any day of the week.” Then at most 63 (= 9 times 7) days are accounted for, not 64. [**Proof by contradiction**.]

35. To prove the triangle inequality, \(|x| + |y| \geq |x + y| \), we consider *four cases* [quadrants in x-y plane]:

1) \(x \) and \(y \) both nonnegative: \(|x| + |y| = x + y = |x + y| \) and result is true.
2) \(x \) and \(y \) both negative: \(|x| + |y| = (-x) + (-y) = -(x + y) = |x + y| \) and result is true.
3) \(x \) negative and \(y \) nonnegative: Result is trivially true if \(y = 0 \), so let \(x < 0 \) and \(y > 0 \). Hence \(-x < |x| \) and \(-y < |y| \) and adding gives \(-(x) + (-y) < x + y < |x| + |y| \) That is, \(-|x + y| < (x + y) < |x| + |y| \) so \(|x + y| < |x| + |y| \) and result is true.
4) \(x \) nonnegative and \(y \) negative: This case is symmetric to case 3) so result is true.

39. Theorem: “For positive integer \(n \), \(n \) is odd if and only if \(5n + 6 \) is odd.” : \(p \leftrightarrow q \)

Direct proof of \(p \leftarrow q \): If \(n \) is odd, then \(n = 2k + 1 \), so \(5n + 6 = 5(2k + 1) + 6 = 10k + 11 = 2(5k + 5) + 1 \) which is odd.

Indirect proof of \(q \leftarrow p \), by proving \(\neg p \rightarrow \neg q \): If \(n \) is not odd, then \(n = 2k \), so \(5n + 6 = 5(2k) + 6 = 2(5k + 3) \) which is *not* odd.

49. A constructive proof that there are 100 consecutive positive integers that are not perfect squares: Consider the perfect squares \(n^2 \) and \((n+1)^2 \). By algebra, we see there are \(2n \) positive integers strictly between them that are not squares. If \(n = 50 \), we see that 2501, 2502, ..., 2600 meet the criterion.

55. Theorem: “For odd integers \(a \) and \(b \), with \(a \cdot b \), there is a unique integer \(c \) such that \(|a - c| = |b - c| \).”

Either \((a - c) = (b - c) \) or \((a - c) = -(b - c) \). The first case implies \(a = b \), in contradiction of the given. The second case implies \((a + b) = 2c \) and \(c \) is \((a + b)/2 \) which is an integer because \(a \) and \(b \) are odd.