3. w: “Randy works hard.” d: “Randy is a dull boy.” j: “Randy will get the job.”
 1) \(w \) Hypothesis
 2) \(w \rightarrow d \) Hypothesis
 3) \(\therefore d \) 1), 2) Modus Ponens
 4) \(\overline{d} \rightarrow \overline{j} \) Hypothesis
 5) \(\overline{\overline{j}} \) 3), 4) Modus Ponens

5. “All men are mortal.” \(\forall x, \text{if } x \text{ is a man, } x \text{ is mortal.} \) This allows us to state:
 “If Socrates is a man, Socrates is mortal.”
 “Socrates is a man.” Is hypothesis.
 Therefore [by Modus Ponens], Socrates is mortal.
 Note: a more formal analysis would use predicates: \(H(x) : \text{“}x\text{ is a man.”} \) \(D(x) : \text{“}x\text{ is mortal.”} \)

7. a) \(D(x) \) : “I took the day \(x \) off.” \(r \) : “It rains.” \(s \) : “It snows.”
 1) “If I take the day off, it either rains or snows.” \(\forall x, D(x) \rightarrow (r \lor s) \)
 2) “I took Tuesday off or I took Thursday off.” \(D(\text{Tuesday}) \lor D(\text{Thursday}) \)
 3) “It was sunny on Tuesday.” May be interpreted to mean
 “It did not rain or snow on Tuesday.”
 4) “It did not snow on Thursday.”
 5) \(\therefore \text{“}I \text{ did not take off Tuesday.”} \) by Modus Tollens using 3) & 1) with \(x = \text{Tuesday}. \)
 6) \(\therefore \text{“}I \text{ took Thursday off.”} \) by Disjunctive Syllogism using 5) & 2).
 7) \(\therefore \text{“}I \text{ rained or snowed on Thursday.”} \) by Modus Ponens using 6) & 1): \(x = \text{Thursday}. \)

11. a) Define predicates \(S(x) : \text{“}x\text{ is a student in this class.”} \) \(L(x) : \text{“}x\text{ understands logic.”} \)
 1) “All students in this class understand logic.” : \(\forall x, S(x) \rightarrow L(x) \)
 allows us to state: “If Xavier is a student in this class, Xavier understands logic.”
 2) “Xavier is a student in this class.” : \(S(\text{Xavier}) \)
 3) “Therefore, Xavier understands logic.” : by Modus Ponens using 1) and 2).

13. b) “The number \(\log_2 3 \) is irrational if it is not the ratio of two integers. Therefore, since
 \(\log_2 3 \) cannot be written in the form \(a/b \) where \(a \) and \(b \) are integers, it is irrational.”
 This is the fallacy of “begging the question” or circular reasoning, because it a assumes
 the conclusion “\(\log_2 3 \) is irrational” with no proof that it cannot be written in the form \(a/b \).