3.1 p223.

1. Prove that the product of three consecutive integers is divisible by 6.

Let the product \(P = n(n+1)(n+2) \),
then \(2|n \) or \(2|(n+1) \) by cases [where \(n = 2k + r \) for \(r = 0 \) or \(1 \)], so \(2|P \).
And \(3|n \) or \(3|(n+2) \) or \(3|(n+1) \) by cases [where \(n = 3q + r \) for \(r = 0 \), \(1 \), or \(2 \)], so \(3|P \).
Because \(2|P \) and \(3|P \) [where 2 and 3 are (relatively) prime], then \(2\times3 = 6|P \).
Remark: Later we will prove this theorem by mathematical induction.

3. Prove that if \(n \) is an odd positive integer, then \(n^4 \equiv 1 \pmod{16} \).

Let \(n = 2k + 1 \), then \(n^4 = 16k^4 + 32k^3 + 24k^2 + 8k + 1 \)
\[= 8k[2k^3 + 4k^2 + 3k + 1] + 1 \]
\[= 8k(k+1)[2k^2 + 2k + 1] + 1 \]
Now \(2|[k(k+1)] \) so \(16|[8k(k+1)(2k^2 + 2k + 1)] \) hence \(8k(k+1)(2k^2 + 2k + 1) + 1 = n^4 \equiv 1 \pmod{16} \).

7. Prove there are no integers \(x \) and \(y \) such that \(3x^2 - 8y = 1 \).

Rewrite the equation as \(3x^2 - 1 = 8y \) and reduce both sides (mod 8):
Then \(3x^2 - 1 \equiv 0 \pmod{8} \) and \(3x^2 \equiv 1 \pmod{8} \)
Now by cases: if \(x = 2k+1 \),
then \(3x^2 = 3(2k+1)^2 = 3[4k^2 + 4k + 1] = 3[4k(k+1) + 1] \equiv 3 \pmod{8} \), contrary to the equation.
And if \(x = 2k \),
then \(3x^2 = 3(2k)^2 = 12k^2 \equiv 4k^2 \pmod{8} \) if \(k \) itself is even,
or \(4k^2 \pmod{8} \equiv 4 \pmod{8} \) if \(k \) itself is odd, contrary to the equation.

9. Prove that there are no integers \(x \) and \(y \) such that \(x^4 - 16y^4 = 3 \).

Rewrite the equation as \(x^4 - 3 = 16y^4 \) and reduce both sides (mod 16):
Then \(x^4 - 3 \equiv 0 \pmod{16} \) and \(x^4 \equiv 3 \pmod{16} \)
Now by cases: if \(x = 2k+1 \), then exercise 3 shows \(x^4 \equiv 1 \pmod{16} \), contrary to the equation.
And if \(x = 2k \), then \(x^4 = (2k)^4 = 16k^4 \equiv 0 \pmod{16} \), contrary to the equation.

11. Based on some examples, we conjecture that if \(a \neq b \), then \(\frac{2ab}{a+b} < \sqrt{ab} \), for positive \(a \) and \(b \).
This inequality is equivalent to \(\frac{\sqrt{ab}}{a+b} < \frac{1}{2} \) by dividing both sides by \(2\sqrt{ab} \).
This inequality is equivalent to \(\sqrt{ab} < \frac{a+b}{2} \) by multiplying both sides by \((a+b) \).
This inequality was proved in Example 1 on page 215, so reversing the steps completes the proof.