25. \(P(n) \): A set with \(n \) elements has exactly \(n(n–1)/2 \) subsets with exactly two elements, for \(n \geq 2 \).

Basis: \([n = 2] \) If the set has two elements \(\{a_1, a_2\} \), then it has only 1 two-element subset and \(1 = 2(2–1)/2 \)

Implication: If a set with \(k \) elements has exactly \(k(k–1)/2 \) subsets with exactly two elements, then consider a set with \((k+1) \) elements \(\{a_1, a_2, \ldots, a_k, a_{k+1}\} \).

Now there \(k \) sets of the form \(\{a_i, a_{k+1}\} \) for \(1 \leq i \leq k \) that use the element \(a_{k+1} \) and by the induction hypothesis exactly \(k(k–1)/2 \) subsets with exactly two elements that do not use the element \(a_{k+1} \).

The total is \(k + \frac{k(k–1)}{2} = \frac{2k + k(k–1)}{2} = \frac{k(2k+1)(k+1)–1}{2} \), which shows \(P(k) \) implies \(P(k+1) \).

31. Let \(F \) be the number of five-cent and \(S \) be the number of six-cent stamps. Consider pairs \((F, S)\)

a) One stamp: \((1, 0) = 5¢ \) and \((0, 1) = 6¢ \)

b) \(P(n) \): A postage of \(n¢ \) can be formed from \(F \) and \(S \), for \(n \geq 20 \).

Basis: The value of \((4, 0) \) is 20¢, so the basis is true.

Implication: If an amount of \(k¢ \) for \(k \geq 20 \) can be formed from \((F+S)\) stamps, then we show that an amount of \((k+1)¢ \) can be formed by replacing one of the five-cent stamps by a six-cent stamp, if \(F \geq 1 \); or by replacing four six-cent stamps by five five-cent stamps, since otherwise there must be more than three six-cent stamps. Hence \(P(k) \) implies \(P(k+1) \).

C) \(P(n) \): A postage of \(n¢ \) can be formed from \(F \) and \(S \), for \(n \geq 20 \).

Basis: \(P(20), P(21), P(22), P(23), P(24) \) are true as shown above, using four stamps.

Implication: If \(P(j) \) is true for all \(j \), where \(4 \leq j \leq k \) and \(k \geq 24 \), then \((k+1) \geq 25 \) and \((k–4) \geq 20 \), so by the strong induction hypothesis \(P(k–4) \) can be formed, and adding a single five-cent stamp gives \((k+1)¢\). Hence the strong hypothesis \([P(20) \lor P(21) \lor \ldots \lor P(k)]\) implies \(P(k+1) \).

33. An ATM machine dispenses \$20 and \$50 bills. Let \(T \) be the number of \$20 bills and \(F \) the number of \$50 bills. Then consider pairs \((T, F)\):

One bill: \((1, 0) = \$20 \), \((0, 1) = \$50 \)

Two bills: \((2, 0) = \$40 \), \((1, 1) = \$70 \), \((0, 2) = \$100 \)

Three bills: \((3, 0) = \$60 \), \((2, 1) = \$90 \), \((1, 2) = \$120 \), \((0, 3) = \$150 \)

Four bills: \((4, 0) = \$80 \), \((3, 1) = \$110 \), etc.

\(P(n) \): Any amount of value \$10n can be formed for \(n \geq 4 \).

Basis: \(P(4), P(5), P(6) \) are true as shown above, using two, one, or three bills.

Implication: If \(P(j) \) is true for all \(j \), where \(4 \leq j \leq k \) and \(k \geq 6 \), then \((k+1) \geq 7 \) and \((k–2) \geq 4 \), so by the strong induction hypothesis \(P(k–2) \) is true which means \$10k – \$20 can be formed; and replacing a \$20 by a single \$50 will increase that amount to \$10k – \$20 + (\$50 – \$20) = \$10k + \$10 = \$10(k+1).

Hence the strong hypothesis \([P(4) \lor P(5) \lor \ldots \lor P(k)]\) implies \(P(k+1) \).

41. \(P(n) \): \(D_x[x^n] = n\cdot x^{n–1} \) for \(n \geq 1 \).

Basis: \(D_x[x^1] = 1 = 1\cdot x^{(1–1)} \)

Implication: If \(P(k) \) is true, \(D_x[x^k] = k\cdot x^{(k–1)} \), so \(D_x[x^{(k+1)}] = D_x[x\cdot x^n] = [1\cdot x^n + (x)\cdot n\cdot x^{(n–1)}] = (n+1)\cdot x^n \)

So \(P(k) \) implies \(P(k+1) \).

43, 51, 53. [Solutions not shown.]