1. Linear homogeneous recurrence relations with constant coefficients have the form
 \[a_n = c_1a_{n-1} + c_2a_{n-2} + \ldots + c_ka_{n-k}, \]
 for real coefficients \(c_i \), and \(c_k \neq 0 \).
 a) \(a_n = 3a_{n-1} + 4a_{n-2} + 5a_{n-3} \) is linear homogeneous of degree [order] 3
 b) \(a_n = 2na_{n-1} + a_{n-2} \) is not linear homogeneous because coefficient 2n is not constant
 c) is linear homogeneous of degree 4
 d) is not linear homogeneous because of the term 2.
 e) is not linear homogeneous because exponent 2
 f) is linear homogeneous of degree 2
 g) is not linear homogeneous because of the term \(n \)

3. Solve the recurrence relations; with the given initial conditions.
 a) \(a_n = 2a_{n-1} \), for \(n \geq 1 \); \(a_0 = 3 \)
 Characteristic equation.: \(r = 2; a_n = c \cdot 2^n \) for \(n = 0 \) implies \(c = 3 \). \(\textbf{So } a_n = 3 \cdot 2^n \textbf{ for } n \geq 0. \)
 b) \(a_n = a_{n-1} \), for \(n \geq 1 \); \(a_0 = 2 \)
 Characteristic equation.: \(r = 1; a_n = c \cdot 1^n \) for \(n = 0 \) implies \(c = 2 \). \(\textbf{So } a_n = 2 \cdot 1^n = 2 \textbf{ for } n \geq 0. \)
 c) \(a_n = 5a_{n-1} - 6a_{n-2} \), for \(n \geq 2 \); \(a_0 = 1, a_1 = 0 \)
 Characteristic equation: \(r^2 = 5r - 6 \) has solutions \(r_1 = 2 \) and \(r_2 = 3. \)
 \(a_n = c_1 \cdot 2^n + c_2 \cdot 3^n \) for \(n = 0 \) implies \(c_1 + c_2 = 1 \) and
 \(a_n = c_1 \cdot 2^n + c_2 \cdot 3^n \) for \(n = 1 \) implies \(2c_1 + 3c_2 = 0 \).
 The solution is \(c_1 = 3 \) and \(c_2 = -2 \) \(\textbf{so } a_n = 3 \cdot 2^n - 2 \cdot 3^n \textbf{ for } n \geq 0. \)
 d) \(a_n = 4a_{n-1} - 4a_{n-2} \), for \(n \geq 2 \); \(a_0 = 6, a_1 = 8 \)
 Characteristic equation: \(r^2 = 4r - 4 \) has solutions \(r_1 = 2, r_2 = 2 \)
 \(a_n = c_1 \cdot 2^n + c_2 \cdot n \cdot 2^n \) for \(n = 0 \) implies \(c_1 = 6 \) and
 \(a_n = c_1 \cdot 2^n + c_2 \cdot n \cdot 2^n \) for \(n = 1 \) implies \(2c_1 + 2c_2 = 8 \).
 The solution is \(c_1 = 6 \) and \(c_2 = -2 \) \(\textbf{so } a_n = 6 \cdot 2^n - 2n \cdot 3^n \textbf{ for } n \geq 0. \)

7. In how many ways can a \(2 \times n \) rectangular board be tiled using \(1 \times 2 \) and \(2 \times 2 \) pieces?
 \(n = 0: \) Empty rectangle; \(T_0 = 1; n = 1: T_1 = 1; n = 2: T_2 = 1 + 1 + 1 = 3; n = 3: T_3 = 3 + 1 + 1 = 5; \)
 \(n = 4: \) Adjoin a vertical \(2 \) by \(1 \) to each of the ones for \(n = 3, \) or
 adjoin a horizontal pair to each of the ones for \(n = 2, \) or
 adjoin a \(2 \) by \(2 \) square to each of the ones for \(n = 2; \) that is \(T_4 = 5 + 3 + 3 = 11 \)
 In general for \(n \geq 2, T_n = T_{n-1} + T_{n-2} + T_{n-2}; \) where \(T_0 = T_1 = 1. \)

 The solution of this recurrence is \(T_n = \frac{2}{3}(2)^n + \frac{1}{3}(-1)^n = \frac{2^{n+1} + (-1)^n}{3} \)

13. Find the solution to \(a_n = 7a_{n-2} + 6a_{n-3} \) for \(n \geq 3 \), with \(a_0 = 9, a_1 = 10, \) and \(a_2 = 32. \)
 Characteristic equation \(r^3 = 7r + 6 \) has three solutions \(-2, -1, 3)\)
 Hence \(a_n = c_1 \cdot (-2)^n + c_2 \cdot (-1)^n + c_3 \cdot (3)^n. \)
 Using the initial conditions gives three linear equations with solution \(c_1 = -3, c_2 = 8, c_3 = 4. \)
 So \(a_n = (-3) \cdot (-2)^n + (8) \cdot (-1)^n + (4) \cdot (3)^n. \) for \(n \geq 0. \)