1. Represent \(\{ x : 2 \leq x < 5 \} \) using interval notation and as a graph on a line. \([2, 5)\)

2. Represent \(\{ x : x \leq 4 \} \) using interval notation and as a graph on a line. \((-\infty, 4]\)

3. What is the distance along a road between milepost 345 and milepost 102? \(345 - 102 = 243 \) miles

4. If \(b \) is bigger than \(a \), what is the difference between \(b \) and \(a \)? \(b - a \)

5. If \(c \) and \(d \) are any pair of numbers, what is the distance between \(c \) and \(d \)? \(|c - d| \)

6. If \(x \in [3, 10] \), express its distance from the center of the interval. \(|x - c|\) where \(c = (3+10)/2 = 6.5 \)

7. Represent \(|x| \leq 3\) using a pair of inequalities and using interval notation. \(-3 \leq x \leq 3\) or \([-3, 3]\)

8. Represent \(|x| < 4\) using a pair of inequalities and using interval notation. \(-4 < x < 4\) or \((-4, 4)\)

9. Represent \(|x - 2| < 1\) using a pair of inequalities and using interval notation. \(-1 < x - 2 < 1\) or \((1, 3)\)

10. Represent \(|x + 3| < 0.2\) using ... inequalities and ... interval notation. \(-0.2 < x + 3 < 0.2\) or \((-3.2, -2.8)\)

11. Consider \(f(x) = 3x - 5 \) on the interval \([1, 3]\)
 a) Find the target value \(f(2) \) \(f(2) = 3*2 - 5 = 1 \)
 b) Find a domain subinterval that yields other values within 1.2 units of the target.
 \(\text{Solve } |f(x) - 1| < 1.2 \)
 \(-1.2 < 3x - 5 - 1 < 1.2 \)
 \(4.8 < 3x < 7.2 \)
 \(1.6 < x < 2.4 \)

12. Consider \(g(x) = 5x + 1 \) on the interval \([0, 2]\)
 a) Find the target value \(g(1) \) \(g(1) = 5*1 + 1 = 6 \)
 b) Find a domain subinterval that yields other values within 1 unit of the target.
 \(\text{Solve } |g(x) - 6| < 1 \)
 \(-1 < 5x + 1 - 6 < 1 \)
 \(4 < 5x < 6 \)
 \(0.8 < x < 1.2 \)

13. Consider \(h(x) = x/2 \) on the interval \([0, 8]\)
 a) Find the target value \(h(4) \) \(h(4) = 4/2 = 2 \)
 b) Find a domain subinterval that yields other values within 0.8 unit of the target.
 \(\text{Solve } |h(x) - 2| < 0.8 \)
 \(-0.8 < x/2 - 2 < 0.8 \)
 \(1.2 < x/2 < 2.8 \)
 \(2.4 < x < 5.6 \)

14. Consider \(F(x) = \frac{2x^2 - 5x + 2}{x - 2} \), for \(x \neq 2 \)
 a) Sketch the graph of \(F(x) \) on the interval \([0, 4]\)
 \(\text{Graph at right.} \)
 b) From the graph, or table of values, estimate a target for \(x = 2 \).
 \(F(x) \) is near 3
 c) Find a domain subinterval that yields values within 0.6 of that target.
 \(\text{Solve } |F(x) - 3| < 0.6 \)
 \(-0.6 < (x - 2)(2x - 1)/(x - 2) - 3 < 0.6 \)
 \(-0.6 < (2x - 1) - 3 < 0.6 \)
 \(3.4 < 2x < 4.6 \)
 \(1.7 < x < 2.3 \)

15. Find bound on \(|3x - 2|\) for \(x \) in the interval \([0, 2]\)
 If \(0 < x < 2 \), then \(0 < 3x < 6 \) and \(-2 < 3x - 2 < 4 \).
 \(\text{Hence } 0 \leq |3x - 2| < 4 \) from graph of \(y = |3x - 2| \)
 So upper bound is 4.

16. Consider \(G(x) = 3x^2 - 5x \) on the interval \([0, 2]\)
 a) Find the target value \(G(1) \) \(G(1) = 3 - 5 = -2 \)
 b) Find a domain subinterval that yields values within 1.2 of that target.
 \(\text{Solve } |G(x) - (-2)| < 1.2 \)
 \(|3x^2 - 5x + 2| < 1.2 \)
 \(|x - 1)(3x - 2)| < 1.2 \)
 \(|x - 1)*4| < 1.2 \) if \(0 < x < 2 \)
 \(|x - 1| < 0.3 \) for \(0 < x < 2 \)
 \(\text{Domain subinterval is } (0.7, 1.3) \) in \((0, 2)\)