Goal: Develop a counting formula to count multiples of \(k \) between \(m \) and \(n \)

Immediate task: to count the multiples of seven between 251 and 2008

Note: “between” accepts endpoints; “strictly between” rejects endpoints.

1. How many integers are between 1 and 10? [Recall “between” is inclusive of endpoints!]

2. How many integers are between 1 and \(n \)?

3. How many integers are between 10 and 100? [Use over-count and exclusion]

4. How many integers are between positive integers \(m \) and \(n \) (where \(m \leq n \))? \[n - (m - 1) \]

5. How many integers are between -10 and 100? [Same formula works!]

If \(m \) and \(n \) are integers, with \(m \leq n \), then there are \(n - m + 1 \) integers \(i \) with \(m \leq i \leq n \).

6. How many even integers are between 1 and 99?

7. How many even integers are between 1 and \(n \)? [Between 1 and \(n \), there are \(s \) even integers: \(n - 2 < 2s \leq n \)]

Notation: Floor of any real number \(x \), written \(\lfloor x \rfloor \), is largest integer \(\leq x \)

Remark: Between 1 and \(n \), there are \(\lfloor n/2 \rfloor \) even integers

8. How many even integers are between 9 and 99? [Use over-count and exclusion]

9. How many even integers are between \(m \) and \(n \)?

10. How many multiples of three are between 1 and 251?

 Remark: Between 1 and \(n \), there are \(\lfloor n/k \rfloor \) integers that are multiples of \(k \).

11. How many multiples of three are between 100 and 251?

12. How many multiples of three are between \(m \) and \(n \)?

Theorem 1: Let \(m \) and \(n \) be integers with \(m \leq n \), and let \(k \) be a positive integer, then the number of multiples of \(k \) between \(m \) and \(n \) is \(\left\lfloor \frac{n}{k} \right\rfloor - \left\lfloor \frac{m-1}{k} \right\rfloor \) which differs from \((n - m + 1)/k \) by at most 1.

 [Note carefully the argument on page 4 of the text.]

13. How many multiples of seven are between 251 and 2008?

Definition: A prime is an integer greater than 1 which is not the product of two other integers.

14. How many primes are between 1 and 100? [List of primes to 1000 is on page 6.]

Prime number theorem: The fraction of numbers between 1 and (large enough) \(n \) that are prime is approximately \(1/(\ln n) \).

Summary: What generally useful problem solving methods have we used? See page 6.